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We show that if f is any function on a triangle T, then the variation of the
gradient of the nth Bernstein polynomial Bn(f) on Tcannot exceed the variation of
the gradient of the nth Bezier net 1n on T. We deduce that iff is in C2

( T), then the
variation of the gradient of Bn(f) on T is bounded by a given constant (depending
on T) times the variation of the gradient off It is further shown that the variation
of Bn(f) on T is bounded by 2n/(n + I) times the variation of 1n on T. 1987
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1. INTRODUCTION

In order to motivate our discussion we first recall some properties of
univariate Bernstein polynomials [3]. Let p be any polynomial of degree
n >1. Then we can write p in the form

Then

which gives

lIn

fa Ip(x)1 dX:::;;n + 1 i~O lail·
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(1)

(2)
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Applying (2) to p' and p" gives

I f1 1f Ip'(x)ldx:( I la,+ I ~a,l,
o ,~O

1 n 2f Ip"(x)ldx:(n I la'+2-- 2a"I+a,l.
o ,~()

(3 )

(4)

Inequalities (3) and (4) can be expressed neatly by introducing the
function a on [0, 1] which is linear on [iln, (i + 1)/n] for i = 0, 1,..., n ~ I
and satisfies a(i/n) = a, (i = 0, I, ... , n). We denote by V(/, [0, 1]) the total
variation of a function f on [0, 1] and write Vdf; [0, I]) = V(f', [0, 1J).
Then (3) and (4) can be written as

VIp, [0, 1]):( VIa, [0, I]),

Vdp, [0, 1]):( VI (a, [0, 1]).

(5)

(6)

Another related result, due to P61ya and Schoenberg [5], is that if
su; [0, I]) denotes the number of times a function f changes sign on
[0, 1], then

SIp, [0, 1]):(S(a, [0, I]). (7)

We now see how inequalities (5), (6), and (7) are equivalent to
"variation diminishing" properties of Bernstein polynomials. For any
functionlon [0, I] we define the Bernstein polynomial B" (f) by

" (i)(n) ..B,,(f)(x) = II - . (I-x)'x"-'.
,~O n I

(8)

Let!;, denote the function on [0, I] which is linear on [iln, (i + 1)In] for
i = 0, I, ... , n - I and interpolates I at iln (i = 0, 1,... , n). Then from (5), (6),
and (7) we have

V(B,,(f), [0, IJ):( VC/'" [0, lJ),

VdBnClJ, [0, IJ):( VI (I" [0, IJ),

S( B" (f), [0, I J) :( scI;" [0, I J).

It is easily seen that

(9)

(10)

(II)

Ve/'" [0, 1]):( Vu; [0, I])

VI c/,,, [0, I] :( Vdf; [0, I])

sc/,,, [0, 1]):( Su; [0, I])
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and so

V(B,,(f), [0, 1])"; V(f, [0,1]),

VdB" (f), [0, 1])"; VI (f, [0, 1])

S(B" (f), [0, 1])"; S(f, [0, 1]).

(12 )

(13 )

(14 )

We now turn to a consideration of analogous results for Bernstein
polynomials on triangles. Let T I , T2 , T} be the vertices of the triangle T.
We shall identify any point Pin T with its barycentric coodinates (u, v, w),
where

u+v+w=l, u~O, v~O, w~O.

(15 )

For any function f on T we define the Bernstein polynomial B" (f, T), or
simply B" (f), by

(.. k') I
B,,(f)(P) := L f~, L, - ,,~', uVwk

.

i+/+k=" n n n /;J.k.

We denote by J;, the function on T which interpolates f at {(ijn, jjn, kjn):
i + j + k = n} and which is linear on each element of Q", the regular
triangulation of T at the same points {(ijn,jjn,kjn)}, This function!" is
called the nth Bezier net of [2]. For future reference we now give an
explicit description of the triangulation Q w For i,j, k ~ 0, i +j + k = n - 1,
we let Uijk denote the triangle with vertices

(~ L~)
n 'n' n ' (~~ ~)

n' n 'n ' (~ L~)" .n n n

For i,j, k ~ 0, i + j + k = n - 2, we let W i /k denote the triangle with vertices

(~ j+ I k + I)
n' n ' n ' (

i + I L k + I)
n 'n' n ' (

i + 1/+ 1, ~),
n n n

Then Q" = {Uilk : i + j + k = n - I} u {Witk : i + j + k = n - 2}. This is
illustrated for n = 4 in Fig, I, where the triangles Uijk and W i / k are shown in
white and black, respectively,

We require the analogs of Vand VI to vanish only for constant functions
and for linear functions, respectively. Since we also require them to be
invariant under rotations, we define

V (f' T) '- f (f2 2f2 f2) Ij2
I ., .- T ' xx + , xy +, yy .

(16 )

(17)
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FIGURE 1

(18 )

Definition (17) does not make sense for the function ]", except in the
sense of taking a limit as now described. For i,j, k ~ 0, i +} + k = n ~ 2, the
change in the gradient of!" across the line segment [Uk joining ((i + 1)/n,
(j + 1)/n, k/n) and ((i + 1)/n,j/n, (k + 1)/n) is easily seen to have magnitude

l
.r(i + 2, £,~) +.r(~/+ 1, k + 1) ~.r(i + 1,J + 1,~)

n nn n n n n n n

(
i +1i k + I) I-.r -n-'~' -n- nl T 2 T3 1/2L1

where T 2 T3 denotes the vector from T2 to T3 and L1 = Area T.
So VI (],,, N) for some small neighbourhood N around l}jk can be

regarded as (18) multiplied by the length of l}jk. Denoting this by V,ljJ!',)
we have

V;jk (In) = l.r(i + 2, £,~) +f(~/+ 1, k + I)
n nn n n n

-.r(i+ 1,J + 1,~) _f(i + I, £, k + 1)1
1
T

2
T

3
12/2L1 (20)

n n n n n n

Corresponding formulae hold for the variation Vtk (],,) and V~k (]'J
around the line joining ((i + 1)/n, (j + 1lin, k/n) to (i/n, (j + 1lin, (k + 1)/n)
and around the line joining ((i + 1)/n, }/n, (k + 1)/n) to (i/n, (j + 1lin,
(k + 1)/n), respectively. We therefore define

(21 )
s=l i+j+k=fl 2

We have now formulated analogs of (9) and (to), namely

V(Bn(f), T) ~ V(j~, T),

VdBn(T) ~ VI (/n, T).

(22)

(23)
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It is not clear to the author how to formulate an analog of inequality
(11). We prove in Section 2 that inequality (23) does indeed hold and is
sharp. This says, roughly speaking, that Bn (f) cannot be further from
being linear than is /". In Section 4 we show that (22) does not hold in
general but instead we have

2n A

V(Bn(f), T)~- V(fn, T).
n+l

(24 )

It remains to consider analogs of (12) and (13). Now for any given
values {jijk: i,j, k ~ 0, i +1+ k = n}, we can find a smooth function f
satisfying f (iln, lin, kin) =hjk (i +1+ k = n) for which V(f, T) is arbitrarily
small. Thus there is no constant C such that V(Bn(f, T) ~ CV(f, T) for all
smooth functionsf In contrast we show in Section 3 that there is a con
stant C (depending on the angles of T) such that

for all f in C2
( T). Such a constant C can be given explicitly in terms of the

angles of T; in particular C can be taken < 2 if T is close enough to
equilateral.

Finally we mention a recent result of Chang and Davis [1] which has
some similarities with our results and was partly responsible for the writing
of this paper. The authors show that ifln is convex on T, then BII(f) is con
vex; but also give an example of a convex function f on T for which BII(f)
is not convex.

2. THEOREM 1

THEOREM 1. For any n ~ 1 and any function f on the triangle T,

(23)

Our method of proof is to derive (23) first for the special case when
Bn(f) is of degree 2 and then subdivide T and approximate Bn(f) on each
sub-triangle by a quadratic polynomial. We shall denote by II, the space of
polynomials of degree r and write fijk = f (iln, lin, kin), L1 = Area T.

LEMMA 1. Inequality (23) holds if Bn(f) is in Il2 •

Proof Choose h in III so that (Bn(f) - h)(u, v, w) = au 2 + bv 2 + cw 2 for
some a, b, c. Putting g = f - h, we have Bn(g) = Bn(f) - Bn(h) = Bn(f) - h,
since Bn reproduces Ill' Then VdBn(f), T)= VdBn(g)+h, T)=
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VdB,,(g), T) and VI(J;" T)= VIU~Il+h, T)= VI(g", T). So it is sufficient
to prove

A straightforward calculation shows that

VI (Bn(g), T) = 2~ {a2
1 T2T31

4 + h2
1 T3TI 1

4 + c2
1 T1 T2 1

4

+ 2ah( T2T3 . T3T j)2 + 2hc( T3T1 • T] T 2 )2

+ 2ca( T I T 2 ' T2T3)2} 1/2.

(25)

(26)

We now calculate Vdi", T). Since Bn (g)=(au 2+bv 2 +cw2)x
(u+v+w)" 2, we have for i+j+k=n,

(
i' k) 1

g -,1-,- = ( 1) {ai(i-l)+hj(j-l)+ck(k-l)}.
nnn nn- .

Applying (20) now gives for i + j + k = n - 2,

(27)

Deriving corresponding formulae for V~dgn) and V;jk(id and sub
stituting into (21) gives

From (26) and (28) we can easily deduce (25). I

Now let

(l ~ i,j ~ 3) (29)

and let ,1j,,12,,13,,14 denote respectively the triangles TjTI2T3j,
T j2 T2Tn, T 31 Tn T3, Tn T 31 T 12 · Take any function f on T and for
r = 1, ... , 4 write

r n! i j k
Bn(f)ILl r = I aijk""k'uvw,

i+j+k~n 1!J..
(30)

where u, v, W now denote barycentric coordinates for ,1 r' (E. g., if r = I,
(u, v, w)=uTj +VT]2+wT31')



DIMINISHING PROPERTIES OF BERNSTEIN POLYNOMIALS 117

LEMMA 2. We have the equations

Furthermore

4

L L a;jk = 4 L f ijk'
r= 1 i+)+k=n i+)+k=n

(31)

(32)

(33)

(34)

(35 )

Proof Equations (32)--(34) follow immediately from Theorem 8 of [ll
To prove (35) we note that the function Fijk on Tgiven by Fijdu, v, w)=

(n !/i!j!k!) UiViW k satisfies

(36)

This can be seen either by direct calculation or by noting that
Fijk=2LJ/(n+l)(n+2) times a multivariate B-spline (Corollary 2 of [4]).
From (36) and (15) we see that

(37)

Then (35) follows on applying (37) to the triangles LJ I , ... , LJ 4 and noting
that L;~ I SJ,Bn(f) = hBn(f)· I

Formulae (31)-(34) can be expressed more neatly by introducing the
following averaging operators. For any array {bijk} we define

(A I b)ijk = Hbi,i-', k+ 1+ bi,i+ I, k-I),

(A 2 b )ijk = Hb i+l,i. k - 1+ bi_ I.i. k+ d,

(A 3 b)ijk = Hbi-',i+ I, k + b j + l,i-l, k)'

(38 )

(39)

(40)
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LEMMA 3. Let {bijk: i +j + k = 2n} be any array satisfying b2i. 21. 2k =/Uk'
Then for i + j + k = n,

a;ik = (A~ A ~bb n.J. b

a~k = (A7 A 3b )i.J+n. b

atk = (A{A~b)',J,k+n,

atk = (A il A!z A ~ b)n- i. n- J. n--k'

Proof To derive (41) we note that from (40),

and from (39)

1 J k (i)(k) ,
=2J+ k p~OY~O f3 y in-p-y,p"

by (31). Formulae (42)-(44) follow similarly. I
From Eq. (35) and Lemma 3 we can immediately deduce

LEMMA 4. If {b iik : i +j + k = 2n} is any array, then

i+j+k=n

i i b) ( i JA k b) }+(A I A2 i,J,k+n+ A I A 2 3 n-i,n-J,n-k

=4 I b2i,2J,2k'

i+j+k=n

(4\ )

(42)

(43 )

(44 )

LEMMA 5. For r = 1,..., 4, let gr denote any function on LI r for which
Bn(f)ILI r= Bn(gr, LI r)' Then

4

L VI (g~, Ll r)~ VI (In, T),
r = 1

(45)

Proof Note that using barycentric coordinates on LIn gr(ljn, jln,
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k/n) = aijk (i +i + k = n). Now consider triangle J 1 and take i,i, k with
i +i + k = n - 2. Then from (41), after some simplification,

a 1
2 . k + al . I k 1 - a 1+ I . I k - a 1+ I . k+ Ir+ ,J. I,J+ , + I ,J+, I ,J,

=!A~AHbi+ 2 + n,j, k + bi_ 2 +n,j+ 2, k+ 2 - bi+n,j+ 2, k - bi+n,j, k+ 2)'

So from (20),

(46)

where for i +i + k = 2n - 4,

Vljk = Ib i + 4, j, k + b i, j + 2, k+ 2 - b i + 2, j + 2, k - b i + 2, j, k+ 2 I· (47)

Similarly we have for i +j + k = n - 2,

Vijdg~) ~! (A7 A~v);,j_ 2+n, k IT2T31
2/2J,

Vijdg~)~ !(A{ A~ v );,j, k_ 2+n I T 2T3 1
2/2J, (48)

Vijk (g~) ~ ! (A ~ A ~ A ~ v)n_ 2 _ i, n_ 2 _ j, n_ 2 _ kiT2 T 3 1
2/2J.

From (46), (48), and Lemma 4 (with b replaced by v and n by n - 2) we
have

4

L L Vijdg~)~ L V2i,2j,2kIT2T312/2J
r~ I i+j+k~n--2 i+j+k~n-2

L Ifi+2,j,k+fi,j+l,k+l-fi+l,j+I,k

=

by (47), the fact that b2i, 2j, 2k = fljb and (20).
Deriving corresponding inequalities for L;~ I Li+j+k~n-2 VS(g~)

(s = 2, 3) and applying (21) gives

r~l s~1 i+j+k=n-2r=l

443

L VI (g~, J r ) = L L

s~l i+j+k~n-2

640/50/2-3
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Proof of Theorem 1. For any p in fln, p = Bn(g) for some function g on
T and gn depends only on p and not the choice of g. Then VI (gn, T) and
VI (p, T) are both norms on fln/fl l and so there is a constant C such that

(49)

for all functions g on T. Moreover since (49) is invariant under translation,
rotation or change of scale, it also holds for any triangle similar to T.

Now take m ~ 1 and recall that Q m is the triangulation of T defined after
Eq. (IS). Take any triangle A in Q m and write Bn(f)IA = q(A) + riA),
where q( A) is in fl 2 and all second-order derivatives of r( A) vanish at some
point in A. Then the second-order derivatives of r(A) tend to zero as
m ~ r:IJ uniformly over all A in Q m and so

(50)

Now choose functions g,h on A such that Bn(f)IA=Bn(g,A) and
q(A) = Bn(h, V). Then from Lemma 1, with T replaced by A,

Vdq(A),A)~ VI(hn,A)

~ Vdgn, A)+ Vd(h-g):, A)

~ Vd gn' A) + C VdBn (h - g), A) (51 )

by (49). Now Bn(h-g, A)=Bn(h, A)-Bn(g, A)=q(A)-Bn(f)= -riA)
and so

(52)

Combining (50), (51), and (52) gives

VI (Bn(f), A) ~ Vj (gn(A), A) + o(l/m2
)

where we have replaced gn by gn (A) to make clear it depends on A. Thus

~ L Vdgn(A),A)+o(l).
AEQm

If m = 2S we can apply Lemma 5 successively to give

L VI (gn, A) ~ VI ifn, T).
AEQm

(53 )

(54)
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Combining (53) and (54) and letting s -+ 00 then completes the proof of
Theorem 1. I

We see from the proof of Lemma 1 that equality holds in (23) when
Bn(f)(u, v, w) = u2.

3. THEOREM 2

THEOREM 2. For any f in C2(T),

where if T has angles rJ., {3, y, then

C- 2= min{ a2+ b2+ e2 + 2be cos 2
rJ. + 2ea cos 2 {3 + 2ab cos 2 y

:Ial + Ibl + lei = I}.

(55)

(56)

It is easily seen that if T is equilateral, then C = )34/3. Now from
Theorem 1 it is sufficient to prove that for f in C2

( T),

(57)

In a similar manner to the proof of Theorem 1 we shall first prove this
for f in n 2 and then subdivide T and approximate f on each subtriangle by
a quadratic polynomial.

LEMMA 6. Inequality (57) holds iff is in n2'

Proof Choose h in n 1 so that (f - h)( u, v, w) = au2+ bv2+ ew2 for
some a, b, e. Putting g =f- h, we have vdln, T) = Vdin + h, T) =
VI (in, T) and Vdf, T) = Vdg, T). Thus it is sufficient to prove that

(58)

From (26) we have

VI(g, T)=2~ {a2IT2T314+b2IT3TtI4+e2ITIT214

+ 2ab I T2 T 3 1
2

1T 3 T 1 1
2 cos 2 Y+ 2be I T3 T I 1

2
1TIT2 1

2 cos 2
rJ.

+2eaITIT212IT2T312cos2{3}1/2. (59)

We now calculate Vdin,T). For i+j+k=n, g(ijn,j/n,k/n)=
(1/n 2)(ai2+ b/ + ek2). So from (20), for i + j + k = n - 2,

vtk(gn) = lal'IT2T312/n 2L/
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with corresponding formulae for V7ik (.l~n) and V;~k (gn)' Substituting into
(21) gives .

V,(gn, T)= ~~L11 {laIIT2T312+ IbIIT3T,1 2+ IcIIT,T21

2}. (60)

Then (58) follows from (56), (59), and (60). I

LEMMA 7. For any lunction I on T,

(61 )

Proof We note that 12i, 2j, 2k =Iijk' So for i + j + k = n - 2,

1/;+2,j, k +li,j, k+' - li+ I,j+ " k - /;+ ',j, k+' I

:( 1/2i+4, 2j, 2k +12i+ 2, 2j+ I, 2k +' - 12i+ 3, 2j+ 1, 2k - j~i+ 3, 2j, 2k +' I

+ 1/2i + 3, 2j + I, 2k +12i + I, 2j + 2, 2k + , -j~i + 2. 2j + 2, 2k -/2i + 2, 2j + I. 2k + 1 I

+ 1/2i + 3, 2j, 2k + , +12i + " 2j + " 2k + 2 - 12i + 2, 2j + I, 2k + , - 12i + 2, 2j. 2k + 21

+ I12i + 2, 2j + I, 2k + , +12i, 2j + 2, 2k + 2 - 12i + I, 2j + 2. 2k + 1 - 12i + I, 2j + " 2k + 2 I

and so from (20),

A 3 A

Deriving corresponding inequalities for Vtk (/n) and Vijk (/n) and apply-
ing (21) gives (61). I

Prool 01 Theorem 2. Take m ~ 1 and any triangle A in Qm' Write
IIA = q + r (depending on A), where q is in Il2 and 'xx, rxv , r '''' ---+ 0 as
m ---+ 00 uniformly over A in Qm' Then for s ~ 1, 1ms IA = iims + f ms and by
Lemma 6,

v, Vm." A) = VI (iims' A) + 0(l/m2)

:( CV1 (q, A) + 0(l/m2)

= CV, (f, A) + 0(1/m 2).

Now

V'(]ms, T) = L V, VmS' A) + O(I/s)
A EQm

:(C L Vdf,A)+m 20(1/m2)+0(1/S)
AeQm

(62)
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If ms = 2rn we can apply Lemma 7 successively to give

(63)

Combining (62) and (63) and letting m, s ~ 00 gives (57). I

4. THEOREM 3

We recall the definition of Uijk given after Eq. (15) and define
U= Un(T) = U {Uijk: i +}+k=n -l}. (In Fig. 1, U= U4 (T) is the region
of T coloured white.) We can now state the following result which clearly
implies (24).

THEOREM 3. For any n ~ 1 and any function f on T,

2n A

V(Bn(f), T)~-1 V(fn, U).
n+

(64)

Iff is· linear we have equality in (64) for then V(Bn(f), T)= V(j, T)=
IVfl,1 = IVfl(2nj(n+1))AreaU = (2nj(n+1))V(j,U) = (2nj(n+1))
V(jn, U).

We shall prove Theorem 3 by subdividing T and approximating Bn(f)
on each triangle by a linear function.

LEMMA 8. If S denotes the triangle with vertices A, B, C, and g is the
linear function on S satisfying g(A) = a, g(B) = b, g(C) = c, then

V( g, S) = ! I(b - c) A + (c - a) B + (a - b) C1. (65 )

Proof Straightforward calculation.

LEMMA 9. If gr and ,1 r are as in Lemma 5 (r = 1,... , 4), then

4

I V(g~, Un (,1 r)) ~ v(jn, Un (T)).
r ~ 1

(66)

Proof For i,}, k ~ 0 with i +} + k = 2n - 2 we let ,1 ijk denote the sub
triangle of T with vertices

(
i + 2 ) k)
~'2n'2n ' (

ii+2k)
2n'~'2n ' (

i ) k +2)
2n'2n'~ .

We note that for i+}+k=n-1, ,1 2i,2j,2k= Uijk' For i+}+k=n, r= 1, ..,,4
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we define a~ik as in (30), while for i + j + k = 2n we define h ijk as III

Lemma 3. If L denotes the linear function on J Uk satisfying

(
i i + 2 k)

L 2n'~'"ii =hi.j + 2,b

(
i j k + 2)

L 2n' 2n' 2;;- = h i,j, k + 2

we write

(67)

Then

v(jn, Un(T))= L V(jn' Uud= L X 2i,2j,2k' (68)
i+i+k=rI 1 i+}+k=n I

Now for i+j+k=n-1, consider the triangle Ui+nJ,k' From (41) we
see, after some simplification, that

( I I I I I 1)
ai,j+ I,k - ai,j,k+ l' ai,j,k + I - a i + l.i,k' a i + l,j,k - ai,j+ I,k

= ! A ~ A ~ (b i + n - I.j + 2, k - bi + n l,j, k + 2' bi + n I ,j, k + 2 - b i + n+ I.j, b

bi + n+ I.j,k - bi + n I.j+ 2,d,

From Lemma 8 it follows that

and so

V(g~, U i + n,j,d::::; HA~A~X)i+ n - I,j,k

::::; ~ L (A~A~XLn
i+j+k=n-- J

I,j,k'

(69)

(70)

Similarly we have

(A~A 3XL,j+ n-I,k'
i+j+k~n-l

I+i+k=n-I

(71 )

(72 )

1- i,n - I - j,n - I - k' (73 )
i+j+k=n--l
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From (70)-(73) and Lemma 4 (with b replaced by X and n by n -1) we
have

4

I V(g~, Un(,1r)) ~
r=l

by (68). I
Proof of Theorem 3. Proceeding in a manner similar to that in the

proof of Theorem 1, we see that there is a constant C such that

(74 )

for all triangles A similar to T and all functions g on A.
Now take m?; 1 and any triangle A in Qrn' We write

Bn(f)IA=q(A)+r(A), where q(A)EIl j and all first-order derivatives of
r(A) vanish at some point in A. Then

Now choose a function g on A such that Bn(f)IA = Bn(g, A). Then,
putting q(A)=q,

V(q(A), Un(A)) = V(qn, Un(A))

~ V(gn, Un(A))+ V(q-g):, A)

~ V(gn, Un (A)) + CV(Bn(q - g), A) (76)

by (74). Now

Bn(q-g, A)=q-Bn(g, A)=q-Bn(f)= -r(A). (77)

Combining (75), (76), and (77) gives

Now

V(Bn(f), A) = n~ 1 V(Bn(f), Un(A)) + 0 (~2).

So by (78) and (79)

(79)

(80)
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If m = 2' we can apply Lemma 9 successively to give

(81 )

Combining (80) and (81) and letting s --+ 00 then completes the proof of
Theorem 3. I

We remark that Theorem 3 can also be proved by a similar method to
the proof of (9) in Section 1. However for consistency we have proved all
three results by the same method of subdivision.

Finally we give an example to show that in general we do not have
V(Bn(f), T) ~ Vlfn, T). Let T be an equilateral triangle with vertices
T I=(O,j3), T2 =(-I,O), T3 =(l, 0). Take n=2 and let f be any
function on T satisfying f(T2 ) = 1, f(T3 )= -1, f(TI)=f(!(TI+ T2 ))=
f(!(T2 +T3 )) =.f(!(T3 +TI)) = 0. Then Bn(f)(u,v,w) = V

2
_W

2 and
Bn (f)(x, y) = xy/j3 - x. A straightforward calculation then shows that
V( Bn(f), T) = sinh - 1(1/j3) + i. It is easily seen that Vlfn, T) = 1 and so
V(Bn(f), T) > V(ln, T).
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